TRANSACTION
PROCESSING
FLOW

[N Yo [V o1 o 1 2

L0112 o] =T - Vol s V=T U LY PRSP 3

] B AT a TN DI = =1 0 [PPSR 4

2 F el o T DT =T PPN 4
Real-time Processing Data FIOWuiii ittt st e e et e e s s e e e st e e e s s abeeessnbeeesennnes 5
Real-time Processing Data FIOW (With HSIM)eiieiiiiiiccee ettt sete e s tae et e enee e snbeeennneas 6
Real-time Tokenization Data FIOWccceoiiiiiiiiiiiieie ettt ettt et st s e b e b e snees 7
Real-time Tokenization Data Flow (through external tokenization SErvice).......cccooceeeecieeeeeciiee e 8
Real-time Detokenization Data FIOW.........cii ittt b e st st s e beenbeesnees 9
Batch Processing Data FIOW (With TOKENS)eiiieiiiii ettt e e e et e e e bee e e e nanes 10
Batch Processing Data FIOW (With Card data)cccueeeeciiie ittt ettt e e e e e e e e e 11
Batch Processing Data Flow (with card data, BINS).......c.uiiiiciiii ettt e e e 12
Batch Tokenization Data FIOWccc.coiiiiiiiiieeee ettt ettt sttt st e b e b e st st eeeeteens 13
Batch Tokenization Data FIOW (With BINS)eeiiiiiiiiiiiiiie ettt ettt eetre e e e e tre e e eetreeeeebneeeeennnes 14

Copyright © United Thinkers LLC - 04/02/2019 1

Introduction

This document describes how transaction processing is done depending on the configuration of
UniPay. To learn more about UniPay configurations, review UniPay Deployment Configurations
document.

The UniPay system supports real-time and batch transaction processing. Each of these processes
has an individual life cycle that, along with configurations, affects how transactions are processed.

In addition to UniPay configurations, there are several factors that influence transaction processing:

o Whether card data or token is used in a transaction submitted to the gateway. When
sensitive information is present in incoming data, an additional tokenization process is
performed before the data is submitted to the gateway.

o How tokenization is configured. Tokenization can be arranged in the following ways,
influencing transaction processing on a more precise level:

e Tokenization is done by a tokenization appliance (StrongAuth). This is the most
common tokenization option in UniPay. Sensitive data is tokenized by StrongAuth
right after it reaches UniBroker.

e Tokenization is done by an external service provider. Sensitive data is stored in the
UniBroker cache while data is exchanged between UniBroker and UniPay. To learn
more about UniBroker cache usage, review the additional section in the
document.

o Whether detokenization is required or not. Usually, detokenization is done through the API
call. For real-time processing, detokenization can be done through the user interface when
it is necessary to use card data in a system that is not integrated with UniPay. For example,
it may be necessary for administrators of a hotel that processes transactions through UniPay
to make a purchase for their guest (i.e. using his/her card data) in a store that has no
integration with UniPay gateway.

o Whether transaction processing involves BIN verification. If BIN verification is done,
transactions go through an additional verification phase before the actual processing.

Copyright © United Thinkers LLC - 04/02/2019 2

UniBroker Cache Usage

Tokenization can be done in two different ways — by local connection to StrongAuth or using
another tokenization service.

If StrongAuth appliance is used, a credit card number is tokenized immediately as it enters
UniBroker.

If a different tokenization appliance is used, UniBroker needs to form a request for tokenization to
this external service in a corresponding format. UniPay is responsible for generating of this
message. However, UniBroker is responsible for the submission of this message to the actual
tokenization service because UniBroker has access to the card number.

Therefore, when the transaction with credit card information enters UniBroker, it generates
temporary placeholder and forwards the proxied information to UniPay. When UniPay prepares the
message and sends in back to UniBroker, UniBroker replaces the placeholder with an actual card
number and addresses the request to the tokenization appliance. Usually, it takes a couple of
seconds for the message to be generated in UniPay, and during that time the actual card number is
stored in UniBroker cache. When the message is returned to UniBroker and credit card number is
inserted in this message, a card number gets removed from cache. If any error occurs during
message generation in UniPay and an exception is returned, the card number gets deleted from
UniBroker cache after cache storage period expires.

Credit card data is stored in UniBroker cache for the time needed for UniPay to generate a message
in the format of tokenization service. Usually, this period is less than 10 seconds. The period of
sensitive card data storage in cache can be set individually in unipay.unibroker.account-data-
caching-period property. The minimum value for the field is 240 seconds. If the field is empty,
cache storage period is set as minimum value by default.

In case when any processing issue occurs, the card data is stored in cache for 10 minutes and after
that, it is completely removed from cache automatically.

Copyright © United Thinkers LLC - 04/02/2019 3

In the diagrams below, you can review how all the factors described above influence the

transaction data flow. In most diagrams, tokenization process is done via a tokenization appliance,
such as StrongAuth. However, it can be done in two ways depending on the merchant
configuration:

e via a tokenization appliance directly through UniBroker. In this scenario, no integration with
UniPay is required; the most common tokenization appliance is StrongAuth;

e via a processor, which supports tokenization, through UniPay. In this scenario, the
integration with UniPay is required; multiple tokenization providers can be used. Usually,
tokenization is done through the same processor that is used for transaction processing.

Diagrams are divided into two sections — real-time and batch diagrams.

Real-time Diagrams:

1. Real-time Processing Data Flow — shows the flow of real-time transactions;

2. Real-time Processing Data Flow (with HSM) — shows the flow of real-time transactions
using an HSM device;

3. Real-time Tokenization Data Flow — shows tokenization of data in real-time transactions;

4. Real-time Tokenization Data Flow (through external tokenization service) - shows
tokenization of data in real-time transactions through the external tokenizationservice;

5. Real-time Detokenization Data Flow — shows detokenization of data in real-time
transactions.

Batch Diagrams:

1. Batch Processing Data Flow (with tokens) — shows the flow of batch transactions with
sensitive data represented as tokens;

2. Batch Processing Data Flow (with card data) — shows the flow of batch transaction with
non-tokenized sensitive data;

3. Batch Processing Data Flow (with card data, BINs) — shows the flow of batch transactions
with non-tokenized sensitive data inside, including BIN identification;

4. Batch Tokenization Data Flow — shows tokenization of data in batch transactions;

5. Batch Tokenization Data Flow (with BINs) — shows tokenization of data in batch
transactions, including BIN identification.

Also, there are several notation keys in the diagrams that will be useful for you:
® The sequence of the transaction flow phases is marked by digits.
e Useful notes for the steps of the transaction flow are located in the right section of each diagram.

e Dashed lines of flow indicate the presence of sensitive data. Solid lines indicate the presence of
encrypted/tokenized data.

Copyright © United Thinkers LLC - 04/02/2019 4

UniBroker StrongAuth
>

Real-time Processing Data Flow

card data i

s extracted
from client's message

2: Places card data in cache

4: Computes proxy data

9: Replaces proxy data with card data

«—

5: Forwards client request

]
card data is replaced with proxy dat%l

6: Consumes client request
7: Generates processor request

< 8: Sends processor request

>

proxy data is used as pIacehoIde‘rlI

< 11: Sends response

12: Forwards processor response

13 Consumes processor response

14 Generates client response

>

15: Sends client response
< p

< 16: Forwards client response

Copyright © United Thinkers

LLC - 04/02/2019

1: HTTPs over 443

2: card data is stored in RAM
for 4 minutes

3: HTTPs over 443

5: HTTPs over 443

8: HTTPs over 443

Real-time Processing Data Flow (with HSM)

>

card data is extracted
from client's message

5: Places decrypted p===--=---
card data in cache

7: Computes proxy data :

8: Forwards client request

Y

card data is replaced with proxy dat%l

11: Sends processor req

A

9: Consumes client request

10: Generates processor request

uest
|

proxy data is used as placeholde'%l

12: Replaces proxy dataf--=------
with decrypted card data

- 14: Sends response
< —I—L
15: Forwards processor response ~
P
16 Consumes processor response :
17 Generates client response :
- 18: Sends client response
<
.19: Forwards client response
— — — — [

1: HTTPs over 443

card data includes encrypted
sensitive data - card
number or track/EMV data

2: sends card data and
simultaneously makes API call
with merchant code to retrieve
HSM appliance index

3: decrypts card data with key,
which is retrieved using HSM
appliance index

5: card data is stored in RAM
for 4 minutes

6: HTTPs over 443

8: HTTPs over 443

11: HTTPs over 443

Copyright © United Thinkers LLC - 04/02/2019

Real-time Tokenization Data Flow

UniBroker StrongAuth

from client's message

card data is extractetlill

3: Computes proxy data)

4: Forwards client request
4 >

|
card data is replaced with proxy dat%l

5: Consumes client request

6 Generates client response

«—)
—)

7: Sends client response
< p

8: Forwards client response

<

1: HTTPs over 443

2: HTTPs over 443

4: HTTPs over 443

Copyright © United Thinkers LLC - 04/02/2019

Real-time Tokenization Data Flow

(through external tokenization service)

Client UniBroker UniPay

2: Generates tokenization request |-====---~ \

card data is replaced with proxy dat%l

3: Forwards tokenization request >

4: Generates request for tokenization provider :

Tokenization

Provider

1: HTTPs over 443

3: HTTPs over 443

4: in tokenization provider's

format

< 5: Forwards generated request

6: Replaces proxy data with card data--------)
<------
___________________ 8: Forwards tokenizationrequest ________________p

9: Consumes tokenization request [~======= s
P 10: Sends token 10: in tokenization response
<
11: Forwards tokenization response >
12: Parses tokenization response :
13: Generates tokenization response : 13: in UniPay format
¢ 14: Sends tokenization response
< 15: Forwards tokenization response
— — — —

Copyright © United Thinkers LLC - 04/02/2019

Real-time Detokenization Data Flow

1: Sends detokenization request >
| _2: Gets sgr_d_tiqtg> 2: HTTPs over 443

3: Computes proxy data :

1: HTTPs over 443

4: Forwards client request > 4: HTTPs over 443
|

card data is replaced with proxy datﬁ

5: Consumes client request :

6 Generates client response

< 7: Sends client response
8: Replaces proxy data with card dataF------- \
‘ ______ U
<9i Sends client response with card data _ |
— — — —

Copyright © United Thinkers LLC - 04/02/2019 9

1: Uploads client file »

Batch Processing Data Flow (with tokens)

2: Downloads and processes file

3: Generates processor request file

Pgp en

4: Generates tokens file

Pgp en

5: Uploads processor request file

6: Uploads tokens file

Pa—
cryptedl

P—
crypted'

. 7: Downloads
<

<

<

. 19: Uploads pr
<

23: Downloads client response file'

'20: Downloads processor response file

21: Generates client response file

< 22: Uploads client response file

8: Downloads tokens file

rocessor request file

9: Decrypts tokens file

13: Loads and decrypts processor request file

14: Merges card data into processor request file

16: Removes source files

cessor response file

PR

10: Uploads decrypted tokens file >

11: Calls batch-decrypt AP oEeration.

12:_Downloads card data >

18: Downloads processor response file »

1:to
<ftp-gates.root>/[merchantCo
de]/inbox subfolder

2: from
<ftp-gates.root>/[merchantCo
de]/inbox subfolder, stored in
unicharge.ftp_gates_log table

3:
{unipay.unibroker.public-key}
is used

4
{unipay.unibroker.public-key}
is used

5:to
<unibroker.ftp.root>/inbox
subfolder

6: to
<unibroker.ftp.root>/inbox
subfolder

7: over sftp to
{unibroker.root.inbox}
subfolder

8: to {unibroker.root.inbox}
subfolder

9: {unibroker.private-key} is
used, file is loaded to RAM

10: to <strong-auth.ftp.inbox>
subfolder

11: calls batch-decrypt
operation on
{unibroker.tokenization.realtim
e.host} to decrypt card data in
batch

12: from
<strong-auth.ftp.outbox> to
UniBroker RAM

13: {unibroker.private-key} is
used

14: merged file is kept in RAM

15: over sftp

16: from
{unibroker.root.inbox}

17: from
<strong-auth.ftp.outbox>

18: over sftp, file is kept in
RAM

19: from RAM to
<unibroker.ftp.root>/outbox
subfolder

20: from
<unibroker.ftp.root>/outbox
subfolder

22:to
<ftp-gates.root>/[merchantCo
de]/outbox subfolder

23: from
<ftp-gates.root>/[merchantCo
de]/outbox subfolder

e]
Copyright © United Thinkers LLC - 1/10/2019

10

Batch Processing Data Flow (with card data)

StrongAu

5: Generates card data file

9: Sanitizes client file

< 10: Uploads client file

11: Removes client file

UniBroker

DER— 2 Downloads dientflle________ i

|- - 8: Rownloads response flie with tokens,, |

12: Downloads and processes file

15: Ugloads processor l’gu& file

A

13:

request file

Pgp encryp!

14: Generates tokens file

Pgp encryp!

Ll

16: Uploads tokens file

<
<

< 17: Downloads processor request file

< 18: Downloads tokens file

19: Decrypts tokens file

23: Loads and decrypts processor request file

24: Merges card data Into processor request file

26: Removes source files

< 29: Uploads processor response file

> 30: Downloads processor response file
<

< 32: Uploads dlient response file

<

«—

20: Uploads decrypted tokens file >
21: Calls batch-decrypt API operation >

28: Downloads processor response file

33: Downloads client response ﬂle.

31: Generates dient response flle :

Copyright © United Thinkers LLC - 1/10/2019

\ 4

1:to
<ftp-gates.root>/[merchantCode
1/invault subfolder

2: to local folder
{unibroker.root.inbox}

3: encrypts client file with
{unibroker.content.public-key}

4: from
<ftp-gates.root>/[merchantCode
J/invault subfolder

5
{unibroker.content.private-key}
is used to decrypt client file

6: to <strong-auth.ftp.inbox>

7: calls batch-encrypt operation
on
{unibroker.tokenization.realtime.
host} to encrypt card data in
batch

8: from
<strong-auth.ftp.outbox> into
RAM

9: replaces card data with tokens
in client file in RAM

10: to
<ftp-gates.root>/[merchantCode
]/inbox subfolder

11: from <unibroker.root.inbox>
subfolder

12: from
<ftp-gates.root>/[merchantCode
1/inbox subfolder, stored in
unicharge.ftp_gates_log table

13t
{unipay.unibroker.public-key} is
used

14:
{unipay.unibroker.public-key} is
used

15: to
<unibroker.ftp.root>/inbox
subfolder

16: to
<unibroker.ftp.root>/inbox
subfolder

17: over sftp to
{unibroker.root.inbox} subfolder

18: to {unibroker.root.inbox}
subfolder

19: {unibroker.private-key} is
used, file is loaded to RAM

20: to <strong-auth.ftp.inbox>
subfolder

21: calls batch-decrypt operation
on {strong-auth.realtime.host}
to decrypt card data in batch

22: from
<strong-auth.ftp.outbox> to
UniBroker RAM

23: {unibroker.private-key} is
used

24: merged file is kept In RAM

25: over sftp

26: from {unibroker.root.inbox}

27: from
<strong-auth.ftp.outbox>

28: over sftp, file is kept in RAM

29: from RAM to
<unibroker.ftp.root>/outbox
subfolder

30: from
<unibroker.ftp.root>/outbox
subfolder

32: to
<ftp-gates.root>/[merchantCode
]/outbox subfolder

33: from
<ftp-gates.root>/[merchantCode
]/outbox subfolder

11

Batch Processing Data Flow (with card data, BINs)

oo o]

ownloads client file,

5: Generates card data file

9: Creates a temporary table in HSQDB

10: Generates tokens
11: Generates client file with tokens in RAM

12: Drops a temporary table in HSQDB

¢ 13: Uploads client file

14: Removes client file

6: Uploads card data file. »
>

7: Calls batch-encrypt operation >

15: Downloads and processes file

StrongAuth

A

18: Uploads processor request file

16: Generates processor request file;

19: Uploads tokens file

< 20: Downloads processor request file

< 21: Downloads tokens file

22: Decrypts tokens file

26: Loads and decrypts processor request file

27: Merges card data into processor request file

29: Removes source files

< 32: Uploads processor response file

Fr—

23: Uploads decrypted tokens file

24: Calls batch-decrypt API operation >

33: processor response file

31: Downloads processor response file

<
<

35: Uploads client response file

36: Downloads client response ﬂle’

34: Generates client response file

Copyright © United Thinkers LLC - 1/10/2019

1:to
<ftp-gates.root>/[merchantCo
de]/invault subfolder

2: to local folder
{unibroker.root.inbox}

3: encrypts client file with
{unibroker.content.public-key}

4: from
<ftp-gates.root>/[merchantCo
de]/invault subfolder

5t
{unibroker.content.private-key}
is used to decrypt client file

6: to <strong-auth.ftp.inbox>
7: calls batch-encrypt operation
on

{unibroker.tokenization.realtim
e.host} to encrypt card data in
batch

8: from
<strong-auth.ftp.outbox> into
RAM

9: populates temporary
in-memory table with account
numbers and token codes

10: joins bin table with
temporary table to generate
tokens

11: merges client file with new
tokens in RAM

13:to
<ftp-gates.root>/[merchantCo
de]/inbox subfolder

14: from
<unibroker.root.inbox>
subfol

15: from
<ftp-gates.root>/[merchantCo
de]/inbox subfolder, stored in
unicharge.ftp_gates_log table

16:
{unipay.unibroker,public-key}
is used

17:
{unipay.unibroker.public-key}
is used

18: to
<unibroker.ftp.root> /inbox
subfolder

19: to
<unibroker.ftp.root> /inbox
subfolder

20: over sftp to
{unibroker.root.inbox}
subfolder

21: to {unibroker.root.inbox}
subfol

22: {unibroker.private-key} is
used, file is loaded to RAM

23: to <strong-auth.ftp.inbox>
subfol

24: calls batch-decrypt
operation on
{strong-auth.realtime.host} to
decrypt card data in batch

25: from
<strong-auth.ftp.outbox> to
UniBroker RAM

26: {unibroker.private-key} is
used

27: merged file is kept in RAM

28: over sftp

29: from
{unibroker.root.inbox}

30: from
<strong-auth.ftp.outbox>

31: over sftp, file is kept in
RAM

32: from RAM to
<unibroker.ftp.root>/outbox
subfolder

33: from
<unibroker.ftp.root> /outbox
subfolder

35: to
<ftp-gates.root>/[merchantCo
de]/outbox subfolder

36: from
<ftp-gates.root>/[merchantCo
de]/outbox subfolder

12

11: Downloads client file
»

Batch Tokenization Data Flow

2: Downloads client file
- - - 5= 2N L LX

3: Persists client file with card data

pgp en

4: Removes client file
|

5: Generates card data file

9: Sanitizes client file

7. Calls batch-encrypt operation >

10: Uploads client file
_< p!

1: to
<ftp-gates.root>/[merchantCode
J/invault subfolder

2: to local folder
{unibroker.root.inbox}

3: encrypts client file with
{unibroker.content.public-key}

4: from
<ftp-gates.root>/[merchantCode
J/invault subfolder

5:
{unibroker.content.private-key}
is used to decrypt client file

6: to <strong-auth.ftp.inbox>

7: calls batch-encrypt operation
on
{unibroker.tokenization.realtime.
host} to encrypt card data in
batch

8: from
<strong-auth.ftp.outbox> into
RAM

9: replaces card data with tokens
in client file in RAM

10: to
<ftp-gates.root>/[merchantCode
]/outbox subfolder

Copyright © United Thinkers LLC - 1/10/2019

13

2: Downloads client file

4: Removes client file

9: Creates a temporary table in HSQDB

11: Generates client response file with tokens in RAM
12: Drops a temporary table in HSQDB

13: Uploads client response file

3: Persists client file with card data

Pgp en

5: Generates card data file

Batch Tokenization Data Flow (with BINs)

10: Generates tokens

7: Calls batch-encrypt operation g
»

15: Downloads client filey
»

14: Removes client request file from local disk

1:to
<ftp-gates.root>/[merchantCode
]/invault subfolder

2: to local folder
{unibroker.root.inbox}

3: encrypts client file with
{unibroker.content.public-key}

4: from
<ftp-gates.root>/[merchantCode
]/invault subfolder

5:
{unibroker.content.private-key}
is used to decrypt client file

6: to <strong-auth.ftp.inbox>

7: calls batch-encrypt operation
on
{unibroker.tokenization.realtime.
host} to encrypt card data in
batch

8: from
<strong-auth.ftp.outbox> into
RAM

9: populates temporary
in-memory table with account
numbers and token codes

10: joins bin table with
temporary table to generate
tokens

11: merges client file with new
tokens in RAM

13: to
<ftp-gates.root>/[merchantCode
]/outbox subfolder

Copyright © United Thinkers LLC - 1/10/2019

14

